Пусть стороны треугольника равны a,b,c. Известно, что средняя линия, параллельная стороне a, вдвое меньше её и равна a/2. Аналогично, две другие средние линии равны b/2 и c/2. Треугольник со сторонами a/2, b/2, c/2, очевидно, подобен исходному треугольнику по отношению трёх соответствующих сторон. При этом коэффициент подобия равен 1/2. Значит, площадь этого треугольника равна (1/2)²=1/4 площади исходного (отношение площадей равно квадрату коэффициента подобия), то есть равна 48/4=12.