Площадь трапеции abcd равна 30 . её основание ad в два раза больше основания bc. точка p лежит на середине боковой стороны ab, а точка r на стороне cd, деля её в отношении dr : rc как 2: 1. прямые ar и pd пересекаются в точке q. найдите площадь треугольника apq

Пчка Пчка    3   07.06.2019 19:10    4

Ответы
03721 03721  07.07.2020 10:55
Обозначим ВС=х, АД=2х, проведем высоту СК,обозначим Н,  СК перпендикулярна АД.
S=(х+2х)·Н/2 - площадь трапеции, по условию она равна 30.
Значит х·Н=20. Это очень нужное в дальнейшем значение.

S (Δ APД) = 1/2·АД·H/2  (точка P - середина АВ)
S( Δ APД) = 1/2 х·Н=10 ( я обращала внимание, что х·Н=20)
Проведем высоту RМ паралелльно СК. Из подобия треугольников СКД и RМД
RM=2H/3
S( Δ ARД) = 1/2·2х·2Н/3= 2х·Н/3= 40/3
Площадь треугольника APД состоит из площадей треугольников APQ и AQД. В сумме дает 10
Площадь треугольника ARД состоит из площадей треугольников QPД  и AQД, сумме 40/3.
Запишем это в виде равенств и вычтем из второй строки первую
Получим  S ( ΔQPД) = S (Δ APQ) + 10/3
Обозначим S ( Δ APД) = s
Выразим площади всех треугольников через s
 S ( Δ ABQ) = s  ( у треугольников равны основания АР=РВ и высота общая)
S ( Δ AQД) = 10 - s
S (Δ QRД) = s + 10/3 ( см. выше)
S( Δ BCR) = 1/2 ·ВС· Н/3 ( высота из точки R на сторону ВС, в силу условия ДR:RC=2:1) = 1/6· х·Н= 20/6=10/3
S (Δ ABR) = S ( всей трапеции) - S( ΔARД) - S (Δ BCR)= 30 - 40/3 - 10/3=40/3
Получили, что площади треугольков ABR  и ARД  равны. Поскольку основание AR - общее, значит и высоты, проведенные из точек В и Д на сторону AR  равны.
Значит и площади треугольников ABQ  и AQД  тоже равны. У них основание общее AQ. Высоты равны.
Поэтому s+s=10-s
s=10|3
ответ  Площадь треугольника APQ равна 10/3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия