Площадь ромба 240 см², а разность диагоналей 14 см. Найти периметр ромба.
ответ: 68 см
Объяснение: Площадь ромба равна половине произведения его диагоналей. Примем меньшую диагональ d=х. Тогда, согласно условию, D=х+14.
Ѕ=0,5•х•(х+14)=240 ⇒ х²+14х-480=0
Решение через дискриминант
D=b²-4ac=142-4·1·(-480)=2116 Т.к. D>0, уравнение имеет два корня.
х₁=[-14+√(2116)]:2=16
х₂=[-14-√2116]:2=-30 ( не подходит). ⇒
d=16 см, D=16+14=30 см
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. Ромб - параллелограмм, все стороны которого равны. ⇒
d²+D²=4а²
4а²=16²+30²=1156 ⇒ а=√(1156:4)=17 см
P=4•17=68 см
Площадь ромба 240 см², а разность диагоналей 14 см. Найти периметр ромба.
ответ: 68 см
Объяснение: Площадь ромба равна половине произведения его диагоналей. Примем меньшую диагональ d=х. Тогда, согласно условию, D=х+14.
Ѕ=0,5•х•(х+14)=240 ⇒ х²+14х-480=0
Решение через дискриминант
D=b²-4ac=142-4·1·(-480)=2116 Т.к. D>0, уравнение имеет два корня.
х₁=[-14+√(2116)]:2=16
х₂=[-14-√2116]:2=-30 ( не подходит). ⇒
d=16 см, D=16+14=30 см
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. Ромб - параллелограмм, все стороны которого равны. ⇒
d²+D²=4а²
4а²=16²+30²=1156 ⇒ а=√(1156:4)=17 см
P=4•17=68 см