Первая прямая проходит через точки А=(11;-5) и В-(4;-6). Вторая прямая проходит через точки С= (-22;-4) и D=(-28;-5). Найдите координаты точки пересечения этих прямых. ответ запишите в виде "(12;-34)". Без пробелов и через точку с запятой.

maxshcherba5p08v6b maxshcherba5p08v6b    1   03.12.2021 23:40    19

Ответы
VERONIKA114561378 VERONIKA114561378  18.01.2022 18:41

(26;4)

Объяснение:

Так как наши графики являются прямыми, функции выглядят так: y=kx+b

Найдем значения k и b, подставив значения точек A и B в уравнение y=kx+b и решив следующую систему:

\left \{ {{-5=11k+b} \atop {-6=4k+b}} \right.

\left \{ {{k=\frac{b+5}{11} } \atop {b=-6-4k}} \right.\\\\k=\frac{-6-4k+5}{11} | * 11\\11k = -6-4k+5\\15k=-1\\k=-\frac{1}{15}

Найдем b, подставив в b=-6-4k:

b=-6+\frac{4}{15} =-\frac{90}{15}+\frac{4}{15} =\frac{86}{15}

Первое уравнение имеет такой вид: y=-\frac{1}{15}x+\frac{86}{15}

- - - - - -

Найдем второе уравнение по аналогии (мне лень расписывать системами, так что я буду писать просто через новую строчку и в конце запишу итоговое решение системы)

\left \{ {{-4=-22k+b} \atop {-5=-28k+b}} \right.

- - - - -

22k=4+b\\k=\frac{4+b}{22}\\

b=-5+28k \\k=\frac{4-5+28k}{22} \\k=\frac{28k-1}{22} | * 22\\22k=28k-1\\-6k=-1\\k=\frac{1}{6}

- - - - -

b=-5+\frac{28}{6} = -\frac{30}{6} + \frac{28}{6} =-\frac{2}{6}

\left \{ {{k=\frac{1}{6} } \atop {b=-\frac{2}{6} }} \right.

Второе уравнение имеет следующий вид: y=\frac{1}{6}x-\frac{2}{6}

Чтобы найти точку пересечения, нужно приравнять уравнения графиков.

-\frac{1}{15} x + \frac{86}{15} = \frac{1}{6} x-\frac{2}{6} | * 30\\-2x+172=5x-10\\-7x=-182\\x=26\\

Чтобы найти y, нужно подставить в любое уравнение значение x.

y=\frac{26}{6} -\frac{2}{6} =\frac{24}{6} =4

ответ: (26;4)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия