Периметр квадрата, вписанного в окружность, равен 48см. найдите сторону правильного пятиугольника, вписанного в ту же окружность решите все как положено . все с обьяснениями и с решениями.
Если квадрат вписан в окружность значит она для него описанная, тогда мы можем воспользоваться общей формулой РАДИУСА ОПИСАННОЙ ОКРУЖНОСТИ ОКОЛО ПРАВИЛЬНОГО МНОГОУГОЛЬНИКА: (мы можем ее использовать, т.к. квадрат - правильный четырехугольник) R = a / (2 sin(360°/2n)) где a - сторона правильного многоугольника n - число сторон многоугольника.
Найдем R = 48 / (2*sin(360/8) = 48/(2*√2/2) = 48/√2
Опять применим ту же формулу для нахождения стороны ПЯТИУГОЛЬНИКА, выведем её: a = R(2*sin(360°/2n)
a = 48/√2 * sin (36) В принципе ответ верный, но единственное что может не понравиться- нераскрытый синус
Есть еще одна формула (для правильного пятиугольника): a = R * √((5-√5)/2)
Из нее: a = 48/(√2*2) * √(5 - √5) = 24 / √2 * √(5 - √5)
Если квадрат вписан в окружность значит она для него описанная, тогда мы можем воспользоваться общей формулой РАДИУСА ОПИСАННОЙ ОКРУЖНОСТИ ОКОЛО ПРАВИЛЬНОГО МНОГОУГОЛЬНИКА:
(мы можем ее использовать, т.к. квадрат - правильный четырехугольник)
R = a / (2 sin(360°/2n))
где a - сторона правильного многоугольника n - число сторон многоугольника.
Найдем R = 48 / (2*sin(360/8) = 48/(2*√2/2) = 48/√2
Опять применим ту же формулу для нахождения стороны ПЯТИУГОЛЬНИКА, выведем её:
a = R(2*sin(360°/2n)
a = 48/√2 * sin (36)
В принципе ответ верный, но единственное что может не понравиться- нераскрытый синус
Есть еще одна формула (для правильного пятиугольника): a = R * √((5-√5)/2)
Из нее: a = 48/(√2*2) * √(5 - √5) = 24 / √2 * √(5 - √5)
Выбирай, что нравится :)