Сначала найдем саму функцию вида у=ax^2+bx+с, заменив переменные a, b и c числами. для этого подставляем известные значения х и у: а*0+b*0+с=4, отсюда находим с=4 a*1+b*1+4=-1, отсюда находим а=-5-b (-5-b)*4+b*2+4=-4, отсюда находим b=-6 и подставляя это значение во второе уравнение находим, что a=1 теперь ищем ее вершину: по формуле вершин для парабол: х=-b/2a; y=(b^2-4ac)/4a, отсюда находим х=)/2*1)=3; у=)^2-4*1*4)/(4*1))=-5 альтернативно можно было бы решить через производную, результат бы не изменился. ответ: координатой вершины является точка(3|-5).