Отрезок вс-диаметр окружности.прямая ав касательная к окружности а прямая ас пересекает окружность в точке д.вычислите градусные меры треугольник вад если известно что дуга вд=120 градусов.

malinka140117 malinka140117    1   17.03.2019 17:50    2

Ответы
natahakovbasuk natahakovbasuk  07.06.2020 03:21

Применим нахождения углов:
Если из точки, лежащей вне круга, проведены секущая и касательная, то
γ = (β – α)/2  (Смотри рисунок)

Здесь угол А-γ
Применив это правило, находим угол А=(180-120):2=30°
Так как треугольник АВД прямоугольный ( диаметр ВД и касательная АВ пересекаются под прямым углом), угол АВД=90°,

угол ВДА, соответственно, 90-30=60°.

∠А=(180-120):2=30°

∠АВД=90°

∠ВДА=60°


Отрезок вс-диаметр окружности.прямая ав касательная к окружности а прямая ас пересекает окружность в
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия