Отрезки ab и ce пересекаются в их общей середине о. на отрезках ac и be отмечены точки к и m так, что ak равно bm. доказать, что ok равно om.

leda5 leda5    3   09.03.2019 12:10    20

Ответы
shahnozat02 shahnozat02  24.05.2020 10:45

 

Соединим точки А, С, В, Е. Получили четырёхугольник, диагонали которого делятся точкой пересечения пополам. Если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник - параллелограмм. ЕС и АВ - диагонали параллелограмма АСВЕ. Уг. ОАС = уг. ОВЕ как внутренние накрест лежащие при параллельных прямых АС и ВЕ и секущей АВ. Тр-к АОК = тр-ку ВОМ (АО = ОВ, АК = МВ, Уг. ОАС = уг. ОВЕ). В равных тр-ках оставшиеся стороны равны, т.е. ОК = ОВ, что и требовалось доказать.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия