Острый угол параллелограмма равен 30градусов, а меньшая сторона параллелограмма, равная 8√3, равна меньшей диогонали. тогда площадь параллелограмма равна
Вам очень повезло, вопрос взят с комментариев к профилю Zsedina Итак, дам самое краткое решение: 1) диагональ прямоугольника делит его пополам 2) из треугольника с острым углом, и равными сторонами находим: а) высоту параллелограмма противолежащий катет в прямоугольном треугольнике углу 30 градусов равен половине гипотенузы, что в нашем случае 4√3 б) угол при вершине равен 180-2*30=120 по т.косинусов основание=√(2*(8√3)²-2*(8√3)²*сos120)=8√3*√2-2*(-1/2)=8*3=24 3) площадь параллелограмма равна 4√3*24=96√3 кв ед
Итак, дам самое краткое решение:
1) диагональ прямоугольника делит его пополам
2) из треугольника с острым углом, и равными сторонами находим:
а) высоту параллелограмма
противолежащий катет в прямоугольном треугольнике углу 30 градусов равен половине гипотенузы, что в нашем случае 4√3
б) угол при вершине равен 180-2*30=120
по т.косинусов
основание=√(2*(8√3)²-2*(8√3)²*сos120)=8√3*√2-2*(-1/2)=8*3=24
3) площадь параллелограмма равна
4√3*24=96√3 кв ед