Основою піраміди є прямокутний трикутник з катетом 5 см і гіпотенузою 13 см всі бічні грані піраміди нахилені до основи під кутом 45° знайти висоту піраміди
Основание пирамиды - прямоугольный треугольник с катетом 5 см и гипотенузой 13 см. Все боковые грани пирамиды наклонены к основанию под углом 45°. Найдите высоту пирамиды.
ответ: 2 см
Объяснение.
Если все боковые грани пирамиды одинаково наклонены к плоскости основания, то высота проходит через центр вписанного в основание пирамиды круга. (теорема).
Боковые грани образуют с основанием двугранные углы, величина которых по условию 45°.Сторонами их линейных углов являются высоты боковых граней и радиусы вписанной окружности, которые являются проекцией этих высот на основание и по т. о 3-х перпендикулярах перпендикулярны сторонам треугольника в одной точке ( см. рисунок приложения.). Высота пирамиды МО, радиус вписанной окружности ОН и высота МН боковой грани образуют прямоугольный треугольник МОН. Если один из острых углов прямоугольного треугольника равен 45°, то второй тоже 45° =>
∆ МОН - равнобедренный и МО=ОН=r .
Формула радиуса окружности, вписанной в прямоугольный треугольник, r=(a+b-c):2, где а и b - катеты, с - гипотенуза.
Стороны треугольника с гипотенузой 13 и катетом 5 из Пифагоровых троек с отношением сторон 5:12:13. Второй катет АС=12 ( проверьте по т.Пифагора). =>
Основание пирамиды - прямоугольный треугольник с катетом 5 см и гипотенузой 13 см. Все боковые грани пирамиды наклонены к основанию под углом 45°. Найдите высоту пирамиды.
ответ: 2 см
Объяснение.
Если все боковые грани пирамиды одинаково наклонены к плоскости основания, то высота проходит через центр вписанного в основание пирамиды круга. (теорема).
Боковые грани образуют с основанием двугранные углы, величина которых по условию 45°.Сторонами их линейных углов являются высоты боковых граней и радиусы вписанной окружности, которые являются проекцией этих высот на основание и по т. о 3-х перпендикулярах перпендикулярны сторонам треугольника в одной точке ( см. рисунок приложения.). Высота пирамиды МО, радиус вписанной окружности ОН и высота МН боковой грани образуют прямоугольный треугольник МОН. Если один из острых углов прямоугольного треугольника равен 45°, то второй тоже 45° =>
∆ МОН - равнобедренный и МО=ОН=r .
Формула радиуса окружности, вписанной в прямоугольный треугольник, r=(a+b-c):2, где а и b - катеты, с - гипотенуза.
Стороны треугольника с гипотенузой 13 и катетом 5 из Пифагоровых троек с отношением сторон 5:12:13. Второй катет АС=12 ( проверьте по т.Пифагора). =>
ОН=r=(5+12-13):2= 2 см.
МО=ОН=2 см ( высота пирамиды)