Основанием прямого параллелепипеда abcda₁b₁c₁d₁ является параллелограмм abcd, стороны которого равны а*корень из 2 и 2а, острый угол равен 45°. высота параллелепипеда равна меньшей высоте параллелограмма. найдите: а) меньшую высоту параллелограмма; б) угол между плоскостью авс₁ и плоскостью основания; в) площадь боковой поверхности параллелепипеда; г) площадь поверхности параллелепипеда.
а) Меньшая высота h = BP = AP = AB*sin 45 = a√2*1/√2 = a, потому что треугольник ABP - прямоугольный и равнобедренный.
Высота параллелепипеда H = AA1 = h = a.
б) Диагональная плоскость ABC1D1 лежит под углом α к основанию
tg α = H / AD = a / (2a) = 1/2
α = arctg(1/2)
в) Площадь боковой поверхности параллелепипеда
S(бок) = 2*AB*H + 2*AD*H = 2*a√2*a + 2*2a*a = 2a^2*(√2 + 2)
г) Площадь основания
S(осн) = AD*h = 2a*a = 2a^2
Полная площадь поверхности
S = 2*S(осн) + S(бок) = 4a^2 + 2a^2*(√2 + 2) = 2a^2*(√2 + 4)