Основанием пирамиды является треугольник со сторонами 10 см,8 см и 6 см. каждая боковая грань наклонена к плоскости основания под углом 45 градусов. найдите площадь полной поверхности пирамиды.

khoinaSonia khoinaSonia    3   09.03.2019 12:10    2

Ответы
shalyaeg shalyaeg  24.05.2020 10:44

Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности
a=10;b=8;c=6;p=(a+b+c)/2
S^2=p(p-a)(p-b)(p-c)
S=24
R=abc/(4S)
R=5
H=5 (бок ребра наклонены к плоскости основания под углом 45)
S2=S=24
(S1 - площадь нижнего основания, а S2 - площадь верхнего основания усеченной пирамиды)
S1=S2/4 (отношение подобных треуг равно кважрату коэф подобия)
S1=6
объем получившейся усеченной пирамиды=V=(1/3)*2.5*(24+кореньиз(24*6)+6)=35 (cм^3)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия