Основание пирамиды прямоугольный треугольник с катетами 6см и 8см высота пирамиды равна 12см и делит гипотенузу треугольника пополам найти боковые рёбра пирамиды
Высота пирамиды делит гипотенузу прямоугольного треугольника, основания пирамиды пополам, => все боковые ребра равны. прямоугольный треугольник основание пирамиды: катет а=6 см катет b =8 см гипотенуза с =√(6²+8²), с=10 с/2=5 см прямоугольный треугольник: катет а=5 см - 1/2 гипотенузы с (прямоугольного треугольника основания пирамиды) катет Н=12 см - высота пирамиды гипотенуза m - боковое ребро пирамиды по теореме Пифагора: m²=12²+5² m=13 см ответ: длина бокового ребра пирамиды 13 см
Так как высота делит гипотенузу пополам, то Основанием высоты пирамиды служит центр описанной около основания окружности, значит боковые рёбра пирамиды равны. Гипотенуза по т. Пифагора: с=√(а²+b²)=√(6²+8²)=10 см. R=c/2=5 см. В прямоугольном треугольнике, образованном высотой пирамиды, найденным радиусом и боковым ребром, ребро равно: l=√(h²+R²). l=√(12²+5²)=13 см - это ответ.
прямоугольный треугольник основание пирамиды:
катет а=6 см
катет b =8 см
гипотенуза с =√(6²+8²), с=10
с/2=5 см
прямоугольный треугольник:
катет а=5 см - 1/2 гипотенузы с (прямоугольного треугольника основания пирамиды)
катет Н=12 см - высота пирамиды
гипотенуза m - боковое ребро пирамиды
по теореме Пифагора:
m²=12²+5²
m=13 см
ответ: длина бокового ребра пирамиды 13 см
Гипотенуза по т. Пифагора: с=√(а²+b²)=√(6²+8²)=10 см.
R=c/2=5 см.
В прямоугольном треугольнике, образованном высотой пирамиды, найденным радиусом и боковым ребром, ребро равно: l=√(h²+R²).
l=√(12²+5²)=13 см - это ответ.