. Известно, что объем пирамиды V равен 1/3 произведения площади S основания на высоту h.
2. По условию задачи дано: в основании лежит прямоугольник со сторонами 6 см и 8 см, боковые ребра L имеют длину 13 см.
Высота h пирамиды опущена в точку пересечения диагоналей d прямоугольника, ее значение вычислим по теореме Пифагора:
h² = L² - (1/2 d)², откуда h = √13² - 1/4 d².
D определим из прямоугольного треугольника с катетами 6 см и 8 см:
d = √6² + 8² = √36 + 64 = √100 = 10 см.
Значит h = √169 - 1/4 * 100 = √144 = 12 см.
3. Посчитаем V пирамиды:
V = 1/3 * 6 см * 8 см * 12 см = 192 см³.
ответ: Объем составляет 192 см³.
. Известно, что объем пирамиды V равен 1/3 произведения площади S основания на высоту h.
2. По условию задачи дано: в основании лежит прямоугольник со сторонами 6 см и 8 см, боковые ребра L имеют длину 13 см.
Высота h пирамиды опущена в точку пересечения диагоналей d прямоугольника, ее значение вычислим по теореме Пифагора:
h² = L² - (1/2 d)², откуда h = √13² - 1/4 d².
D определим из прямоугольного треугольника с катетами 6 см и 8 см:
d = √6² + 8² = √36 + 64 = √100 = 10 см.
Значит h = √169 - 1/4 * 100 = √144 = 12 см.
3. Посчитаем V пирамиды:
V = 1/3 * 6 см * 8 см * 12 см = 192 см³.
ответ: Объем составляет 192 см³.