Около трапеции abcd с основаниями ad и bc описана окружность радиуса 5. центр описанной окружности лежит на основании ad. основание bc равно 6. найдите диагональ ac трапеции.

Локи30 Локи30    3   18.05.2019 10:40    1

Ответы
kovtunenkoone kovtunenkoone  11.06.2020 16:49

Опустим перпендикуляры (они же высоты) BK и CL на большее основание AD. Т. к. по свойству описать окружность можно только около равнобедренной трапеции, то проекции AK и LD ее боковых сторон на основание равны (проекции - это катеты двух образующихся прямоугольных треугольников, лежащие на основании AD). Т. к. центр описанной окружности O лежит на основании AD, то значит AD - диаметр, и равен AD=D=2R=2*5=10. Тогда AK=LD=(10-6)/2=4/2=2.

Опустим в равнобедренном (т. к. BO=CO=R) высоту OH, она же медиана. Значит в прямоугольном треугольнике BHO гипотенуза равна 5, а один из катетов равен 6/2=3. Тогда по теореме Пифагора второй катет (искомая высота) будет равен √(25-9)=√16=4. Т. к. это трапеция, то все высоты равны и CL=OH=4. В прямоугольном треугольнике  CLD гипотенуза CD равна √(4+16)=√20=2√5, значит  cosCDL=2/2√5=1/√5=√5/5.  Запишем теорему косинусов дла треугольника ACD: AC²= AD²+CD²-2*AD*CD*cosCDL

                                                                                                    AC²= 10²+(2√5)²-2*10*2√5*√5/5

                                                                                                    AC²= 100+20-2*10*2√5*√5/5

                                                                                                    AC²= 120-40=80

                                                                      cледовательно AC=√80=4√5

ответ: 4√5

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия