Дано: Решение:
∠AOB = 1/9 ∠BOC ∠AOB = ∠COD и ∠BOC = ∠DOA как
вертикальные углы при пересекающихся
Найти: ∠AOB; ∠BOC; прямых.
∠COD; ∠DOA Тогда: ∠AOB = ∠COD = х
∠BOC = ∠DOA = 9х
Сумма всех 4-х углов - 360°
2*(х + 9х) = 360
10х = 180
х = 18 9х = 162
∠AOB = ∠COD = 18°
∠BOC = ∠DOA = 162°
Может так ?
Сумма смежных углов равна 180°. Обозначим меньший угол как x, тогда больший будет равен 9x. Имеем:
x+9x=180°
10x=180°
x=18°
9x=18°·9=162°.
ответ: 18° и 162°.
Дано: Решение:
∠AOB = 1/9 ∠BOC ∠AOB = ∠COD и ∠BOC = ∠DOA как
вертикальные углы при пересекающихся
Найти: ∠AOB; ∠BOC; прямых.
∠COD; ∠DOA Тогда: ∠AOB = ∠COD = х
∠BOC = ∠DOA = 9х
Сумма всех 4-х углов - 360°
2*(х + 9х) = 360
10х = 180
х = 18 9х = 162
∠AOB = ∠COD = 18°
∠BOC = ∠DOA = 162°
Может так ?
Сумма смежных углов равна 180°. Обозначим меньший угол как x, тогда больший будет равен 9x. Имеем:
x+9x=180°
10x=180°
x=18°
9x=18°·9=162°.
ответ: 18° и 162°.