Необходимо полное решение задачи 13x - 7y = 8 и 3x + ky = −11 уравнения двух прямых. Найдите значение k, при котором линии: а) параллельны. б) перпендикулярны.
ответ:Представим уравнение с угловым коэффициентом в виде y = kx + a. Для этого перенесем все значения кроме y в правую часть: 3y = -2x + 7. Затем разделим правую часть на коэффициент 3. Получим: y = -2/3x + 7/3
Найдем уравнение NK, проходящее через точку K(-2;1), параллельно прямой y = -2/3x + 7/3
ответ:Представим уравнение с угловым коэффициентом в виде y = kx + a. Для этого перенесем все значения кроме y в правую часть: 3y = -2x + 7. Затем разделим правую часть на коэффициент 3. Получим: y = -2/3x + 7/3
Найдем уравнение NK, проходящее через точку K(-2;1), параллельно прямой y = -2/3x + 7/3
Подставляя x0 = -2, k = -2/3, y0 = 1 получим:
y-1 = -2/3(x-(-2))
или
y = -2/3x - 1/3 или 3y + 2x +1 = 0
Объяснение: