Не выполняя построения найдите точку пересечения графиков функций y=7x-8. И y=5x-6

ТаняВолк15 ТаняВолк15    1   02.12.2020 11:09    533

Ответы
aselb84 aselb84  21.12.2023 23:04
Для решения данной задачи, мы должны найти точку, в которой графики функций y=7x-8 и y=5x-6 пересекаются.

Для начала обратимся к алгебраическому методу решения системы уравнений. В данном случае имеем два уравнения:

y = 7x - 8 (уравнение 1)
y = 5x - 6 (уравнение 2)

Для нахождения точки пересечения графиков функций нужно найти значения х и у, которые удовлетворяют обоим уравнениям одновременно, то есть являются решениями этой системы уравнений.

Для этого можно применить метод подстановки или метод сложения/вычитания уравнений.

1. Метод подстановки

В уравнении 1 заменяем y на (5x-6):

5x-6 = 7x - 8

Теперь решаем данное уравнение относительно x:

5x - 7x = -8 + 6
-2x = -2
x = -2 / (-2)
x = 1

Теперь можем найти значение у, подставив найденное x в любое из исходных уравнений. Возьмем уравнение 2:

y = 5*1 - 6 = 5 - 6 = -1

Таким образом, точка пересечения графиков функций y=7x-8 и y=5x-6 равна (1, -1).

2. Метод сложения/вычитания уравнений

Мы можем сложить или вычесть два уравнения, чтобы избавиться от одной из переменных.

Сложим уравнения (уравнение 1 + уравнение 2):

(7x - 8) + (5x - 6) = 0

12x - 14 = 0

12x = 14

x = 14 / 12
x = 7 / 6

Теперь, найдя значение x, можем подставить его в любое из исходных уравнений. Возьмем уравнение 1:

y = 7*(7/6) - 8 = 49/6 - 8 = 49/6 - 48/6 = 1/6

Таким образом, точка пересечения графиков функций y=7x-8 и y=5x-6 равна (7/6, 1/6).

Оба метода дают одинаковый ответ: точка пересечения графиков функций y=7x-8 и y=5x-6 равна (1, -1) или (7/6, 1/6).

Важно понимать, что здесь предложен алгебраический метод решения. Для построения точки пересечения графиков функций следует использовать графический метод, что позволит наглядно увидеть и проверить полученный результат.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия