Подробно.
Пусть данный ромб АВСД.
Высота ВН=12 см, диагональ ВД=13 см.
Стороны ромба равны.
Диагональ ромба делит его на два равных треугольника.
∆ АВД=∆ СВД.
Проведем в равнобедренном ∆ АВД высоту АМ к стороне ВД и высоту ВН к стороне АД.
В ∆ ВНД катет НД=5 ( отношение сторон из Пифагоровых троек 5,12,13, можно проверить по т.Пифагора).
ДМ=МВ=13:2=6,5 см, т.к. АМ высота и медиана равнобедренного треугольника ВАД.
Прямоугольные ∆ ВНД и ∆ АМД подобны - имеют общий острый угол при Д.
Из подобия следует:
АМ:ВН=ДM:ДH.
АМ•5=12•6,5
AM=15,6 см
S ∆ АВД=АМ•ВД/2
S АВСД= 2 S ∆ АВД.
S АВСД=АМ•ВД=15,6•15=202,8 см²
Подробно.
Пусть данный ромб АВСД.
Высота ВН=12 см, диагональ ВД=13 см.
Стороны ромба равны.
Диагональ ромба делит его на два равных треугольника.
∆ АВД=∆ СВД.
Проведем в равнобедренном ∆ АВД высоту АМ к стороне ВД и высоту ВН к стороне АД.
В ∆ ВНД катет НД=5 ( отношение сторон из Пифагоровых троек 5,12,13, можно проверить по т.Пифагора).
ДМ=МВ=13:2=6,5 см, т.к. АМ высота и медиана равнобедренного треугольника ВАД.
Прямоугольные ∆ ВНД и ∆ АМД подобны - имеют общий острый угол при Д.
Из подобия следует:
АМ:ВН=ДM:ДH.
АМ•5=12•6,5
AM=15,6 см
S ∆ АВД=АМ•ВД/2
S АВСД= 2 S ∆ АВД.
S АВСД=АМ•ВД=15,6•15=202,8 см²