 ЮлияМезина 
                                                08.08.2019 23:10
                                                
                                                ЮлияМезина 
                                                08.08.2019 23:10
                                             Кирилл727383 
                                                08.08.2019 21:12
                                                
                                                Кирилл727383 
                                                08.08.2019 21:12
                                             pminikrolik 
                                                08.08.2019 21:14
                                                
                                                pminikrolik 
                                                08.08.2019 21:14
                                             Boom11ok 
                                                08.08.2019 23:00
                                                
                                                Boom11ok 
                                                08.08.2019 23:00
                                             Лана200611 
                                                11.11.2020 20:25
                                                
                                                Лана200611 
                                                11.11.2020 20:25
                                             stupinaksp029hy 
                                                11.11.2020 20:25
                                                
                                                stupinaksp029hy 
                                                11.11.2020 20:25
                                             amina318 
                                                11.11.2020 20:25
                                                
                                                amina318 
                                                11.11.2020 20:25
                                            
Даны точка M (3,-2,1) и векторы l(1,-2,4) и m(-3,0,4)
Для начала находим координаты вектора, перпендикулярного искомой плоскости. Таковым является векторное произведение заданных векторов:
i j k | i j
1 -2 4 | 1 -2
-3 0 4 | -3 0 = -8i - 12j + 0i - 4j -0i - 6k = -8i - 16j - 6k.
Координаты (-8; -16; -6). Вспомним, что в уравнении плоскости Ax+By+Cz+D=0 вектор (A;B;C) является вектором, перпендикулярной заданной плоскости. Поэтому искомое уравнение имеет вид -8x - 16y - 6z + D = 0 .
Остается найти свободный коэффициент D - его найдем из условия, что плоскость проходит через точку M(3; -2; 1). Подставляем значения в уравнение:
-8*3-16*(-2)-6*1+D = 0
D = 24-32+6 = -2
Искомое уравнение -8x-16y-6z-2=0.
Можно сократить на -2: 4x+8y+3z+1=0.