Пусть дана плоскость ACD1 в виде линий пересечения её с гранями куба.
Действия:
1) Проводим диагональ DB основания.
Этим самым мы находим точку О, через которую проходит плоскость, перпендикулярная к заданной.
2) Проводим прямую D1O.
Эта прямая - линия пересечения заданной плоскости и плоскости, перпендикулярной к ней.
3) Проводим отрезок ВЕ, перпендикулярный к D1O.
Задание выполнено.
Желающие могут определить фактическую длину такого перпендикуляра по заданным размерам куба.
Примем длину ребра куба, равную а, длину перпендикуляра - х.
Половина диагонали основания равна а√2/2.
Длина отрезка D1O равна:
D1O = √(а² + (а√2/2)²) = √(а² + 2а²/4) = √(6а²/4) = а√3/√2.
Из подобия треугольников составляем пропорцию.
x/(а√2/2) = a/а√3/√2.
Отсюда х = а√3/3.
Пусть дана плоскость ACD1 в виде линий пересечения её с гранями куба.
Действия:
1) Проводим диагональ DB основания.
Этим самым мы находим точку О, через которую проходит плоскость, перпендикулярная к заданной.
2) Проводим прямую D1O.
Эта прямая - линия пересечения заданной плоскости и плоскости, перпендикулярной к ней.
3) Проводим отрезок ВЕ, перпендикулярный к D1O.
Задание выполнено.
Желающие могут определить фактическую длину такого перпендикуляра по заданным размерам куба.
Примем длину ребра куба, равную а, длину перпендикуляра - х.
Половина диагонали основания равна а√2/2.
Длина отрезка D1O равна:
D1O = √(а² + (а√2/2)²) = √(а² + 2а²/4) = √(6а²/4) = а√3/√2.
Из подобия треугольников составляем пропорцию.
x/(а√2/2) = a/а√3/√2.
Отсюда х = а√3/3.