Найдите площадь трапеции, длины параллельных сторон которой равны 5 см и 15 см, а длины непараллельных сторон – 8 см и 6 см !

SadEngineer SadEngineer    2   31.07.2021 12:38    1

Ответы
gleb090902 gleb090902  31.07.2021 12:40

1) Пусть АВСD - трапеция, Вс-4 дм, AD-25 дм, АВ-20 дм, CD313 дм. Площадь трапеции можно найти по формуле: S-12(BC+AD)'h. 2) Опустим высоты һ%3DВЕ-CF. ДАЕВ и ДDFC -прямоугольные. Обозначим АЕ-х, тогда FD-25-(x+4)-21-х. Из ДАЕВ по т.Пифагора находим высоту h*-ВЕ?-AВ-АЕ?-202-x?. Из ДDFC по т.Пифагора находим высоту h?-CF2-CD-FD?-132-(21-х)2. Так как высоты равные, приравниваем полученные выражения и решаем уравнение: 202x-137-(21-х)3; 400-x-169-441+42х-x?3; 42х-672; X-16. Находим высоту трапеции: h-V(202-16?)-V(400-256)-v144-12 (дм). 3) S-1/2(BC+AD)"'h-1/2(4+25)"12-6'29-174 (дм?). ответ: 174 дм?.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия