Трапеция ABCD. BC=2-меньшее основание, AD=8-большее основание, угол В=углу А=90 – т.к. трапеция прямоугольная. Угол D=45. Если из вершины С опустить высоту СН на основание АD, то получится прямоугольник АВСН и прямоугольный треугольник СНD. Прямоугольник АВСН: ВС=АН=2- противолежащие стороны прямоугольника, тогда НD=AD-AH=8-2=6. Прямоугольный треугольник СНD: угол D=45, угол СНD=90 (СН-высота), следовательно угол HCD=180- угол D- угол СНD=180-45-90=45, отсюда треугольник СНD еще и равнобедренный, а тогда СН=НD=6. S трапеции=0,5*(ВС+AD)*CH=0,5*(2+8)*6=30