Добрый день! Рад, что вы обратились ко мне с вопросом. Давайте разберемся с задачей.
У нас есть правильная пирамида с основанием в виде треугольника, апофема которой равна 1.1. Нам нужно найти площадь боковой поверхности этой пирамиды.
Чтобы решить эту задачу, нам понадобится знание некоторых формул. Давайте начнем с того, что площадь боковой поверхности пирамиды можно найти, используя формулу:
Sбок = (периметр основания × апофема) / 2.
Ответим на первый вопрос: "Что такое периметр?".
Периметр - это сумма длин всех сторон фигуры. В нашем случае, у нас основание пирамиды представлено треугольником.
Чтобы найти периметр треугольника, сначала нужно сложить длины всех его сторон. В нашем случае треугольник правильный, поэтому у него все стороны равны между собой. Это значит, что сторона треугольника равна 9.
Окей, если сторона треугольника равна 9, то периметр равен сумме длин всех его сторон, то есть 9+9+9=27.
Теперь вернемся к формуле площади боковой поверхности пирамиды:
Sбок = (периметр основания × апофема) / 2.
Подставляем значения:
Sбок = (27 × 1.1) / 2.
Давайте все посчитаем. 27 умножить на 1.1 равно 29.7. Дель здесь означает умножение.
Теперь нам нужно разделить 29.7 на 2. Это даст нам окончательный ответ.
29.7/2 = 14.85.
Ответ: площадь боковой поверхности данной пирамиды равна 14.85.
сори братан не знаю , мне баллы нужны
У нас есть правильная пирамида с основанием в виде треугольника, апофема которой равна 1.1. Нам нужно найти площадь боковой поверхности этой пирамиды.
Чтобы решить эту задачу, нам понадобится знание некоторых формул. Давайте начнем с того, что площадь боковой поверхности пирамиды можно найти, используя формулу:
Sбок = (периметр основания × апофема) / 2.
Ответим на первый вопрос: "Что такое периметр?".
Периметр - это сумма длин всех сторон фигуры. В нашем случае, у нас основание пирамиды представлено треугольником.
Чтобы найти периметр треугольника, сначала нужно сложить длины всех его сторон. В нашем случае треугольник правильный, поэтому у него все стороны равны между собой. Это значит, что сторона треугольника равна 9.
Окей, если сторона треугольника равна 9, то периметр равен сумме длин всех его сторон, то есть 9+9+9=27.
Теперь вернемся к формуле площади боковой поверхности пирамиды:
Sбок = (периметр основания × апофема) / 2.
Подставляем значения:
Sбок = (27 × 1.1) / 2.
Давайте все посчитаем. 27 умножить на 1.1 равно 29.7. Дель здесь означает умножение.
Теперь нам нужно разделить 29.7 на 2. Это даст нам окончательный ответ.
29.7/2 = 14.85.
Ответ: площадь боковой поверхности данной пирамиды равна 14.85.
Любые вопросы или необходимые пояснения?