Средняя линия в треугольнике соединяет середины двух строн, она параллельна третьей стороне и равна её половине.
Таким образом зная все средние линии треугольника можно найти все стороны треугольника.
PΔ = 2·6см+2·9см+2·10см = 12см+18см+20см = 50см
ответ: 50см.
Докажем утверждения про среднюю линию:
Пусть в ΔABC: M, N это середины сторон AB, BC соответственно, тогда по теореме Фалеса MN║AC т.к. BN:NC = BM:MA. Поэтому ∠BNM=∠BCA и ∠BMN=BAC как соответственны углы при параллельных прямых. Значит ΔBMN ~ ΔBCA (по трём углам). BC=2·BN т.к. N - середина BC. То есть у треугольников коэффициент подобия равен 0,5. Поэтому MN = AC/2.
Средняя линия в треугольнике соединяет середины двух строн, она параллельна третьей стороне и равна её половине.
Таким образом зная все средние линии треугольника можно найти все стороны треугольника.
PΔ = 2·6см+2·9см+2·10см = 12см+18см+20см = 50см
ответ: 50см.
Докажем утверждения про среднюю линию:
Пусть в ΔABC: M, N это середины сторон AB, BC соответственно, тогда по теореме Фалеса MN║AC т.к. BN:NC = BM:MA. Поэтому ∠BNM=∠BCA и ∠BMN=BAC как соответственны углы при параллельных прямых. Значит ΔBMN ~ ΔBCA (по трём углам). BC=2·BN т.к. N - середина BC. То есть у треугольников коэффициент подобия равен 0,5. Поэтому MN = AC/2.