Найдите объем и площадь полной поверхности прямой треугольной призмы, в основании которой лежит прямоугольный треугольник с катетом 6 см и гипотенузой 10 см, если боковое ребро данной призмы равно большему из катетов основания.
P.S можно с подробным объяснением и рисунком
Очень нужно
Дано:
- В основании прямой треугольной призмы лежит прямоугольный треугольник с катетом 6 см и гипотенузой 10 см.
- Боковое ребро призмы равно большему из катетов основания.
Нам нужно найти объем и площадь полной поверхности этой призмы.
Шаг 1: Построение схемы
Начнем с построения схемы для лучшего понимания задачи.
```
B
/ |\
/ | \
a / | \
/ |h \
/_____G____\
A c C
```
На рисунке выше, треугольник АВС представляет собой основание призмы, прямоугольный треугольник с катетами АВ и AC, а также гипотенузой BC. Ребро BG является боковым ребром призмы.
Шаг 2: Нахождение высоты треугольника
Нам даны значения катета АВ и гипотенузы BC. Мы можем использовать теорему Пифагора для нахождения второго катета.
Катет AC = √(гипотенуза² - катет²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
Таким образом, катет AC равен 8 см.
Шаг 3: Нахождение площади основания
Мы можем найти площадь прямоугольного треугольника АВС, используя формулу: Площадь = (катет1 * катет2) / 2.
Площадь основания = (6 * 8) / 2 = 48 / 2 = 24 кв. см.
Шаг 4: Нахождение высоты призмы
Высота призмы равна высоте треугольника АВС, так как треугольник АВС является основанием призмы.
Высота призмы = h = 6 см.
Шаг 5: Нахождение объема
Объем прямой треугольной призмы вычисляется как произведение площади основания на высоту.
Объем = площадь основания * высота = 24 кв. см * 6 см = 144 куб. см.
Таким образом, объем прямой треугольной призмы составляет 144 куб. см.
Шаг 6: Нахождение площади полной поверхности
Площадь полной поверхности прямой треугольной призмы состоит из площади основания и площади боковых граней.
Площадь боковой грани = (периметр основания * высота) / 2.
Периметр основания = AB + AC + BC = 6 + 8 + 10 = 24 см.
Площадь боковой грани = (24 см * 6 см) / 2 = 144 кв. см.
Площадь полной поверхности = площадь основания + 2 * площадь боковой грани = 24 кв. см + 2 * 144 кв. см = 24 кв. см + 288 кв. см = 312 кв. см.
Таким образом, площадь полной поверхности прямой треугольной призмы составляет 312 кв. см.
Надеюсь, эта информация была полезна и понятна! Если у вас есть еще вопросы, не стесняйтесь задавать.