Найдите х, зная что АВ ЯВЛЯЕТСЯ касательной к окружности. Точка М центр окружности


Найдите х, зная что АВ ЯВЛЯЕТСЯ касательной к окружности. Точка М центр окружности

ryazhechkina ryazhechkina    3   30.10.2021 01:56    0

Ответы
radmila85 radmila85  30.10.2021 06:00

Объяснение:

4а)

<ВАМ=90°;ВА-касательная

∆АВМ- прямоугольный треугольник

ВМ- гипотенуза

МА; ВА- катеты

По теореме Пифагора

АВ=√(ВА²+МА²)=√(7,5²+4²)=√(56,25+16)=

=√72,25=8,5ед.

ответ: х=8,5ед.

4б)

<ВАМ=90°; АВ- касательная.

∆АВМ- прямоугольный треугольник

АМ- катет против угла <ВАМ=30°

ВМ- гипотенуза.

ВМ=2*АМ=2*4,5=9ед.

ответ: х=9ед.

4с)

<ВАМ=90°; АВ- касательная.

∆ВАМ- прямоугольный треугольник

АВ;АМ- катеты

МВ- гипотенуза

АВ=√(ВМ²-АМ²)=√(17²-8²)=√(289-64)=

=√225=15ед

ответ: х=15ед

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия