Дано, что центр окружности находится в точке A(-1;2) и окружность проходит через точку B(0;1).
Вспомним, что уравнение окружности в общем виде имеет вид (x - h)^2 + (y - k)^2 = r^2, где (h, k) - координаты центра окружности, а r - радиус окружности.
Таким образом, нам нужно определить радиус окружности.
Шаг 1: Найдем расстояние между центром окружности A и точкой B.
Используем формулу расстояния между двумя точками d = √((x2 - x1)^2 + (y2 - y1)^2).
Дано, что центр окружности находится в точке A(-1;2) и окружность проходит через точку B(0;1).
Вспомним, что уравнение окружности в общем виде имеет вид (x - h)^2 + (y - k)^2 = r^2, где (h, k) - координаты центра окружности, а r - радиус окружности.
Таким образом, нам нужно определить радиус окружности.
Шаг 1: Найдем расстояние между центром окружности A и точкой B.
Используем формулу расстояния между двумя точками d = √((x2 - x1)^2 + (y2 - y1)^2).
d = √((0 - (-1))^2 + (1 - 2)^2)
= √(1^2 + (-1)^2)
= √(1 + 1)
= √2
Таким образом, радиус окружности равен √2.
Шаг 2: Подставим известные значения в общее уравнение окружности.
(x - h)^2 + (y - k)^2 = r^2
(x - (-1))^2 + (y - 2)^2 = (√2)^2
(x + 1)^2 + (y - 2)^2 = 2
Ответ: Уравнение окружности с центром A(-1;2) и проходящей через точку B(0;1) имеет вид (x + 1)^2 + (y - 2)^2 = 2.
Надеюсь, что объяснение было понятным и полезным для вас! Если у вас есть еще вопросы, пожалуйста, задавайте.