Напишите свойства параллельности двух прямых( и доказательство одного из них) доказательство обязательно

Wilde163 Wilde163    3   02.09.2019 11:00    4

Ответы
jolytalib jolytalib  06.10.2020 11:50

Если при пересечении двух прямых секущей:
1)накрест лежащие углы равны, или
2)соответственные углы равны, или
3)сумма односторонних углов равна 180°, то прямые параллельны.

Доказательство.
Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия