Пусть первая диагональ ромба d₁, а вторая диагональ ромба d₂.
Тогда d₁/d₂ = 3/4.
Тогда d₁ = 3*t, а d₂ = 4*t.
Найдем формулу площади ромба, разобьем ромб на два треугольника (по первой диагонали), зная что диагонали ромба перпендикулярны и точкой пересечения делятся пополам,
тогда S = S₁+S₂ = (1/2)*d₁*(d₂/2) + (1/2)*d₁*(d₂/2) = 2*(1/2)*d₁*(d₂/2) =
9 и 12 см
Объяснение:
Пусть 1 часть диагоналей равна x, тогда они будут равны 3x и 4x соответственно, далее подставим в формулу площади и получиться 6x^2=54
x=3 => 4x=12 3x=9
Пусть первая диагональ ромба d₁, а вторая диагональ ромба d₂.
Тогда d₁/d₂ = 3/4.
Тогда d₁ = 3*t, а d₂ = 4*t.
Найдем формулу площади ромба, разобьем ромб на два треугольника (по первой диагонали), зная что диагонали ромба перпендикулярны и точкой пересечения делятся пополам,
тогда S = S₁+S₂ = (1/2)*d₁*(d₂/2) + (1/2)*d₁*(d₂/2) = 2*(1/2)*d₁*(d₂/2) =
= d₁*d₂/2.
S = d₁*d₂/2.
d₁ = 3t,
d₂ = 4t,
S = (3t)*(4t)/2 = 6*t² = 54 см², отсюда найдем t
t² = 54/6 см² = 9 см²,
t = √( 9см²) = 3 см.
Тогда d₁ = 3t = 3*3см = 9см,
d₂ = 4t = 4*3см = 12 см.
ответ. 9см и 12см.