На высотах вв1 и сс1 треугольника авс взяты точки в2 и с2 так, чтобы угол ав2с = углу ас2в = 90. докажите, что ав2 = ас2

Грызина Грызина    3   17.05.2019 14:50    0

Ответы
dk050805 dk050805  10.06.2020 19:26

AB_1=x, AB=y. Тогда AC_1=kx, AC=ky, B_1C=|ky-x|, C_B= |y-kx| (модуль написан из-за того, что основание высоты может лежать не на стороне, а на ее продолжении).
Теорема Пифагора:
С_2С_1^2=a^2-k^2*x^2, C_2B=(y-kx)^2+(a^2-k^2*x^2)=y^2-2kxy+a^2;
B_2B_1^2=a^2-x^2, B_2C=(ky-x)^2+(a^2-*x^2)=k^2*y^2-2kxy+a^2.

Теперь теорема косинусов для
1. треугольника ABC_2:
y^2=a^2+y^2-2kxy+a^2-2a*корень(y^2-2kxy+a^2)*cos(AC_2B),
a^2-kxy=a*корень(y^2-2kxy+a^2)*cos(AC_2B);
2. треугольника ACB_2:
a^2-kxy=a*корень(k^2*y^2-2kxy+a^2)*cos(AB_2C).

Тогда
корень(y^2-2kxy+a^2)*cos(AC_2B)=корень(k^2*y^2-2kxy+a^2)*cos(AB_2C)
и если углы равны, но не прямые, то k=1, т.е. треугольник равнобедренный.

Если треугольник не равнобедренный и углы не прямые, то из сформулированного условия следует, что
АВ_2 не равно АС_2

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия