На сторонах выпуклого четырёхугольника abcd взяты точки m, p, k, h соответственно так, что am: mb=3: 5, bp: pc=1: 3, ck: kd=4: 5, dh: ha=1: 8. найдите отношение площади шестиугольника mbpkdh к площади четырёхугольника abcd.
Заметим, что S(ABCD) = S(MBPKDH) + S(AMH) + S(PCK)
Найдём отношение S(AMH) к S(ABD). Эти два треугольника имеют общий угол A, соответственно, тогда S(AMH) = S(ABD) * AM/AB * AH/AD = S(ABD) * 3/(3+5) * 8/(8+1) = S(ABD) * 3/9 = S(ABD) / 3
Найдём отношение S(PCK) к S(BCD). Эти два треугольника имеют общий угол C, соответственно, тогда S(PCK) = S(BCD) * CP/CB * CK/CD = S(BCD) * 3/(3+1) * 4/(4+5) = S(BCD) * 3/9 = S(BCD) / 3
Найдём отношение S(AMH) к S(ABD). Эти два треугольника имеют общий угол A, соответственно, тогда
S(AMH) = S(ABD) * AM/AB * AH/AD = S(ABD) * 3/(3+5) * 8/(8+1) = S(ABD) * 3/9 = S(ABD) / 3
Найдём отношение S(PCK) к S(BCD). Эти два треугольника имеют общий угол C, соответственно, тогда
S(PCK) = S(BCD) * CP/CB * CK/CD = S(BCD) * 3/(3+1) * 4/(4+5) = S(BCD) * 3/9 = S(BCD) / 3
Тогда S(PCK) + S(AMH) = S(ABD)/3 + S(BCD)/3 = (S(ABD) + S(BCD)) / 3 = S(ABCD) / 3
Итого, S(MBPKDH) = S(ABCD) - S(AMH) - S(PCK) = S(ABCD) - (S(AMH) +S(PCK)) = S(ABCD) - S(ABCD) / 3 = 2/3 * S(ABCD)
Тогда S(MBPKDH) / S(ABCD) = 2/3
ответ: 2/3