На отрезке, соединяющем середины оснований трапеции abcd, взята точка м. докажите, что равны площади треугольников амс и bмd.

Аносип Аносип    3   15.07.2019 07:10    0

Ответы
4iterok211 4iterok211  19.08.2020 10:59
Точка Е - середина основания ВС, точка К - середина оскования АД. Значит на отрезке ЕК лежит точка М. 
Для начала рассмотрим две трапеции, на которые отрезок ЕК поделил трапецию АВСД.
Трапеции АВЕК и КЕСД равновеликие, поскольку у них равны верхние и нижние основания и высота (так как Е и К середины оснований).
Известно, что медиана делит треугольник на два равновеликие треугольника. 
ОК - медиана треуг. АМД, ОЕ - медиана треуг. ВМС. 
Треуг. АМК и ДМК равновеликие. 
Треуг. ВМЕ и СМЕ также равновеликие.
Получается, что если от трапеций АВЕК и КЕСД отнять равновеликие треуг. АМК, ВМЕ и ДМК, СМЕ, то в результате останутся два равновеликие треуг. АМВ и СМД.
Доказано.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия