Много сделайте хоть что нибудь, желательно с чертежом 1) отрезок кс – перпендикуляр к плоскости треугольника авс, кв перпендикулярно ав. в) чему равен кв, если ас=14, вс=6. угол квс равен 45 градусам. 2) основание ас равнобедренного треугольника лежит в плоскости α. найдите расстояние от точки а до плоскости α, если ав=5, ас=223−−√, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам. 3) из точки а к плоскости α проведены наклонные ав и ас, образующие с плоскость угол 60 градусов. вс=ас=6. найдите ав.

fgoolis58 fgoolis58    1   26.07.2019 06:40    11

Ответы
gesse99 gesse99  24.09.2020 20:23
1. Задача 1. решена пользователем
ХироХамаки Новичок
(решение в файле)

2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.

Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
             ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО:  ВО = ВН · sin 60° = 4 · √3/2 = 2√3

3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.

Много сделайте хоть что нибудь, желательно с чертежом 1) отрезок кс – перпендикуляр к плоскости треу
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия