Площадь треугольника равна S=(1/2)*AB*BC*SinB. Отсюда SinB=12*2/(5*6) =4/5. Sin²B+Cos²B=1. Тогда CosB=√(1-16/25)=3/5. По теореме косинусов: АС²=АВ²+ВС²-2АВ*ВС*SinB или АС²=25+36-10*6*(3/5)=25. АС=5. По формуле медианы треугольника: m(a)=(1/2)√(2b²+2c²-a²) имеем: m(a)=(1/2)√(50+72-25)=√97/2≈4,92. ответ: АС=5, медиана к стороне АС равна округленно 4,92.
SinB=12*2/(5*6) =4/5.
Sin²B+Cos²B=1. Тогда CosB=√(1-16/25)=3/5.
По теореме косинусов:
АС²=АВ²+ВС²-2АВ*ВС*SinB или
АС²=25+36-10*6*(3/5)=25.
АС=5.
По формуле медианы треугольника:
m(a)=(1/2)√(2b²+2c²-a²) имеем:
m(a)=(1/2)√(50+72-25)=√97/2≈4,92.
ответ: АС=5, медиана к стороне АС равна округленно 4,92.