Меньшее основание равнобочной трапеции равно 8, а боковая сторона 13. найдите радиус вписанной в нее окружность.

allahakbar1062p0a3z0 allahakbar1062p0a3z0    2   09.03.2019 04:40    1

Ответы
darth0 darth0  24.05.2020 09:29

Окружность можно вписать в четырёхугольник, если суммы противоположных сторон равны.

Для данной равнобокой трапеции сумма боковых сторон равна 13+13 = 26, тогда и сумма оснований равна 26, т.е большее основание равно 26 - 8 = 18

Найдём высоту трапеции. По теореме Пифагора:

13² = Н² + ((18-8):2)²

13² = Н² + 5²

Н² = 169 - 25 = 144

Н = 12.

Центр окружности находится на прямой, соединяющей середины оснований

Поэтому радиус вписанной окружности равен половине высоты, т.е 6 см

ответ r = 6см

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия