Круговой сектор радиуса r с центральным углом 60 градусов вращается вокруг одного из радиусов, образующих этот угол. найдите объем тела вращения. желательно предоставьте решение на листе. буду .

tolkacheva2005 tolkacheva2005    2   27.07.2019 17:50    15

Ответы
Aidana1620 Aidana1620  25.09.2020 13:13
При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения - шаровой сектор радиуса R=ОА и высотой сектора h=DA.
Объем его вычисляется по формуле: V= (2/3)*πR²*h.
Рассмотрим сечение этого сектора (смотри рисунок):
В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы  ОВ (R), то есть OD=R/2.
Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.

Круговой сектор радиуса r с центральным углом 60 градусов вращается вокруг одного из радиусов, образ
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия