Кокружности с центром о проведите касательные an и bn. докажите, что an=bn, а луч no является биссектрисой угла anb.

Danfdffefd Danfdffefd    1   22.05.2019 07:20    1

Ответы
vlastovskii vlastovskii  17.06.2020 10:52

Рассмотрим 2 треугольника АОN и ВОN. Они оба прямоугольные - углы ОАN и ВОN - прямые между касательными и радиусом окружности. Треугольники равны, т.к. ОА=ОВ - радиусы одной окружности, ON - общая. Прямоугольные треугольники равны по гипотенузе и  катету. А в равных треугольниках против равных сторон лежат равные углы. Против стороны ОА лежит угол АNО, а против стороны ОВ лежит угол ОNВ. Они равны, значит, ON - биссектриса угла АNВ.  А если одни острые углы прямоугольного треугольника равны, то и другие равны. Значит, угол АОN равен углу ВОN. А в равных треугольниках против равных углов лежат равные стороны. Против угла АОN лежит АN, а против угла ВОN лежит BN. Значит АN равно ВN. Что и требовалось доказать.

 

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия