Касательные в точках a и b к окружности с центром o пересекаются под углом 85°. найдите угол abo. ответ дайте в градусах.

aleksandrovaolp08qrl aleksandrovaolp08qrl    1   30.06.2019 20:40    1

Ответы
dimevdokim dimevdokim  02.10.2020 16:35
Соединим центр окружности O  с точкой пересечения касательных. Пусть H точка пересечения касательных. Рассмотрим треугольник  AOH : 1) В нём ∠ OAH = 90° так как радиус OA проведён в точку касания A касательной AH, и треугольник AOH - прямоугольный.
2) Так как касательные проведены из одной точки, то отрезок, соединяющий центр окружности и точку пересечения касательных ( в нашем случае этот отрезок OH) является биссектрисой угла AHB . Поэтому  ∠AHO = ∠AHB / 2 = 85° /  2 = 42.5°.  
3) Сумма двух острых углов в прямоугольном треугольнике равна 90°. То есть  ∠AOH +  ∠AHO = 90°. ∠AOH = 90° -  ∠AHO = 90° - 42.5° = 47.5°

Треугольники AOH и BOH равны ( OH общая сторона.  ∠AHB = ∠OHB . AH = BH - как отрезки касательных проведённых из одной точки) 
Поэтому ∠AOH = ∠BOH = 47.5°
Тогда ∠ AOB = ∠AOH + ∠BOH = 95°
Треугольник AOB равнобедренный так как OA = OB - как радиусы.Поэтому ∠ ABO = ∠ OAB = (180° - ∠ AOB) / 2.
∠ ABO = (180° - 95°) / 2 = 85° / 2 = 42.5°
ответ:∠ ABO = 42.5° 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия