Картинка: https://i.imgur.com/rXeUbS6.jpg

Будда427 Будда427    3   13.05.2020 15:53    2

Ответы
kulanforever kulanforever  13.05.2020 16:30

Очевидно, что здесь график будет основан на параболе.

Сейчас посмотрим, что будет при раскрытии модуля

\displaystyle |x-3| = \left \{ {{x-3,x>3} \atop {3-x, x<3}} \right.∣x−3∣={

3−x,x<3

x−3,x>3

Не стал рассматривать x=3x=3 , потому что он в знаменателе дроби.

При положительном раскрытии дробь равна 1, при отрицательном раскрытии дробь равна -1.

Итого имеем:

\displaystyle y=\left \{ {{x^2-6x+1+3, x>3} \atop {x^2-6x-1+3, x<3}} \right.y={

x

2

−6x−1+3,x<3

x

2

−6x+1+3,x>3

То есть \displaystyle y=\left \{ {{x^2-6x+4, x>3} \atop {x^2-6x+2, x<3}} \right.y={

x

2

−6x+2,x<3

x

2

−6x+4,x>3

Чтобы было удобно строить, выделим полный квадрат и увидим, что оба куска различаются лишь расположением по оси ОУ, а так та же парабола.

\displaystyle y=\left \{ {{x^2-6x+9-9+4=(x-3)^2-5, x>3} \atop {x^2-6x+9-9+2=(x-3)^2-7, x<3}} \right.y={

x

2

−6x+9−9+2=(x−3)

2

−7,x<3

x

2

−6x+9−9+4=(x−3)

2

−5,x>3

То есть оба куска смещены по оси ОХ на 3 единицы вправо, а смещение по ОУ зависит от самого куска: левый кусок (x<3)(x<3) смещен на 7 единиц вниз, а правый (x>3)(x>3) - на 5 единиц вниз.

Кстати, в x=3x=3 - разрыв, поэтому на графике будут две выколотые точки - слева и справа.

Сам график строится так:

Строятся полностью оба куска (довольно легко, по факту из новой точки - в 1-ом куске (3;-5), во 2-м (3;-7) строим самые параболы y=x^2y=x

2

, ну то есть мысленно представляем, что, например, точка (3;-5) является началом координат и от неё параболку шаблонную строим с заученной наизусть таблицей) и на каждом интервале остается только та часть, которая указана в системе.

Картинка 1 - два графика разным цветом

Картинка 2 - итоговый график, то есть после того, как ненужные части были убраны и был добавлен разрыв

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия