Высота этого треугольника, опущенная на гипотенузу из вершины прямого угла, равна 9:6·2= 3 см Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Найдем эти отрезки, обозначив один из них х, другой 6-х:
9=х(6-х) 9=6х-х² 3²= x *(6-x) х²-6х+9=0 Решив это квадратное уравнение, найдем два одинаковых корня х=3 Следовательно, отрезки, на которые высота делит гипотенузу, равны, и треугольник - равнобедренный. Высота равна 3, половина гипотенузы=3. Из прямоугольного треугольника с катетами 3 и 3 найдем боковую сторону ( катет исходного треугольника) х²=3²+3²=18 х= √18=3√2 Катеты равны 3√2
если a и b - катеты
с - гипотенуза и S - площадь, то
S = 1/2*a*b = 9
По торема Пифагора:
c^2 = a^2 +b^2 = 36
Получили систему 2х уравнений:
1/2*a*b = 9
a^2 +b^2 = 36;
a = 18/b
18^2/b^2 + b^2 = 36;
(324 +b^4)/b^2 = 36;
b^4 - 36b^2 + 324 = 0
(b^2 - 18)^2 = 0
b^2 = 18
b = (18)^0.5
a = 18/(18)^0.5 = (18)^0.5
Высота этого треугольника, опущенная на гипотенузу из вершины прямого угла, равна 9:6·2= 3 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Найдем эти отрезки, обозначив один из них х, другой 6-х:
9=х(6-х)
9=6х-х²
3²= x *(6-x)
х²-6х+9=0
Решив это квадратное уравнение, найдем два одинаковых корня х=3
Следовательно, отрезки, на которые высота делит гипотенузу, равны, и треугольник - равнобедренный.
Высота равна 3, половина гипотенузы=3.
Из прямоугольного треугольника с катетами 3 и 3 найдем боковую сторону ( катет исходного треугольника)
х²=3²+3²=18
х= √18=3√2
Катеты равны 3√2
Проверка:
Площадь найдем половиной произведения катетов:
S= (3√2)·(3√2):2=9·2:2=9 cм²