Как доказать, что если биссектриса внешнего угла треугольника пересекает продолжение противоположной стороны в некоторой точке, то расстояния от этой точки до концов продолженной стороны пропорциональны прилежащим сторонам треугольника.

nrdnct nrdnct    2   25.05.2019 00:30    2

Ответы
kairatfylosof kairatfylosof  20.06.2020 23:17
Треугольник АВС, уголС тупой (для удобства), ВМ - продолжение стороны АВ, угол СВМ - внешний угол углаАВС, ВД - биссектриса углаСВМ, проводим линию СД, из точки С параллельно ВД проводим линию на АВ, СК параллельна ВД, СВ - секущая, уголВСК=уголСВД как внутренние разносторонние =уголДВМ, уголСКВ=уголДВМ как соответствующие =уголВСК,  треугольник КВС равнобедренный, КВ=ВС, теорема Фалеса, АД/СД=АВ/КВ(ВС)
АД/СД=АВ/ВС 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия