Из точки к плоскоти а(альфа) проведено 2 наклонные, разница длин которых 6 см. длина их проекций на плоскость а соответственно равно 27 см и 15 см. найти длину перпендикуляра опущеного на плоскость а
Пусть одна наклонная АВ, а другая АС. Из точки А опустим перпендикуляр АР на плоскость α. Соединим точку Р с точками В и С. Получим два прямоугольных тр-ка АВР с гипотенузой АВ и АСР с гипотенузой АС. Проекция ВР = 27см, а проекция СР = 15см. Большей проекции соответствует и большая наклонная, поэтому
АВ - АС = 6, откуда
АС = АВ - 6. (1)
По теореме Пифагора для тр-ка АВР:
АВ² = АР² + ВР² (2)
По теореме Пифагора для тр-ка АСР:
АС² = АР² + СР² (3)
Подставим (1) в (3)
(АВ - 6)² = АР² + СР²
Преобразуем выражение
АВ² - 12АВ + 36 = АР² + СР² (4)
Вычтем (2) из (4)
- 12АВ + 36 = СР² - ВР²
12АВ = ВР² - СР² + 36
12АВ = 27² - 15² + 36
12АВ = 540
АВ = 45
Из (2) АР² = АВ² - СР²
АР² = 45² - 27²
АР² =1296
АР = 36
ответ: расстояние от точки А до плоскости α равно 36см
Пусть одна наклонная АВ, а другая АС. Из точки А опустим перпендикуляр АР на плоскость α. Соединим точку Р с точками В и С. Получим два прямоугольных тр-ка АВР с гипотенузой АВ и АСР с гипотенузой АС. Проекция ВР = 27см, а проекция СР = 15см. Большей проекции соответствует и большая наклонная, поэтому
АВ - АС = 6, откуда
АС = АВ - 6. (1)
По теореме Пифагора для тр-ка АВР:
АВ² = АР² + ВР² (2)
По теореме Пифагора для тр-ка АСР:
АС² = АР² + СР² (3)
Подставим (1) в (3)
(АВ - 6)² = АР² + СР²
Преобразуем выражение
АВ² - 12АВ + 36 = АР² + СР² (4)
Вычтем (2) из (4)
- 12АВ + 36 = СР² - ВР²
12АВ = ВР² - СР² + 36
12АВ = 27² - 15² + 36
12АВ = 540
АВ = 45
Из (2) АР² = АВ² - СР²
АР² = 45² - 27²
АР² =1296
АР = 36
ответ: расстояние от точки А до плоскости α равно 36см
Наклонная AB² = 27²+h², AC² = 15² + h²
AB = AC+6,
(AC+6)² = 27²+h²
AC² = 15² + h²
(AC+6)²-AC²=27²-15²
AC²+12*AC+36-AC²=729-225
12*AC=504-36=468
AC = 468/12 = 39
h² = AC² - 15²
h = √39²-15²= 36