Итак, .объясните каждый шаг вашего решения, а так же предоставьте чертеж, если сможете. боковое ребро правильной треугольной пирамиды равно 12см, оно наклонено к плоскости основания под углом 60°.вычислите площадь полной поверхности пирамиды.

minis551 minis551    1   15.06.2019 07:50    1

Ответы
emdnick emdnick  12.07.2020 14:25
Решение во вложенных файлах
Итак, .объясните каждый шаг вашего решения, а так же предоставьте чертеж, если сможете. боковое ребр
Итак, .объясните каждый шаг вашего решения, а так же предоставьте чертеж, если сможете. боковое ребр
ПОКАЗАТЬ ОТВЕТЫ
andriytustanov andriytustanov  12.07.2020 14:25
SABC-правильная пирамида,ВS=12см, <SВD=60гр.Пирамида правильная,значит в основании лежит правильный треугольник АВС.Обозначим сторону треугольника за а.Найдем высоту этого треугольника BD. BD=ABsin60=a√3/2. OВ=2/3BD=2/3*a√3/2=a√3/3=SBcos60=
=12*1/2=6⇒а=6√3см
Sосн=1/2а²sin60=1/2*108*√3/2=27√3см²
Найдем высоту боковой грани SD из прямоугольного треугольника SOD
SO=SBsin60=12*√3/2=6√3см,DO=1/3BD=1/3*6√3*√3/2=3см
SD=√SO²+DO²=√108+9=√117=3√13
Sбок=3*1/2*АС*SD=3*1/2*6√3*3√13=27√39см²
Sпол=Sосн+Sбок=27√3+27√39=27(√3+√13)cм²
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия