Гипотенуза прямоугольного треугольника = 12 см,за площадью треугольника есть точка которая находится на расстоянии = 10 см от каждой вершины. найдите расстояние от этой точки до площади треугольника.
Точка М находится на одинаковом расстоянии от всех вершин прямоугольного треугольника АВС, т.е. получаем пирамиду МАВС. АВ=12 см, МА=МВ=МС=10 см.
М -вершина пирамиды ,проектируется на середину гипотенузы, в центр окружности - точка О, описанной около прямоугольного треугольника. радиус описанной окружности R=ОА=ОВ=ОС=6 см рассмотрим прямоугольный треугольник МОА: гипотенуза МА=10 см, < МОА=90°, катет ОА=6 см катет ОМ найти по теореме Пифагора: МА²=МО²+ОА² 10²=МО²+6² МО=8 см
ответ: расстояние от точки до плоскости прямоугольного треугольника =8 см
М -вершина пирамиды ,проектируется на середину гипотенузы, в центр окружности - точка О, описанной около прямоугольного треугольника.
радиус описанной окружности R=ОА=ОВ=ОС=6 см
рассмотрим прямоугольный треугольник МОА:
гипотенуза МА=10 см,
< МОА=90°,
катет ОА=6 см
катет ОМ найти по теореме Пифагора:
МА²=МО²+ОА²
10²=МО²+6²
МО=8 см
ответ: расстояние от точки до плоскости прямоугольного треугольника =8 см