Две окружности имеют общий центр. докажите, что хорды большей окружности, касающиеся меньшей окружности, равны между собой. докажите, что отрезки общих внутренних касательных к двум окружностям одинакового
радиуса в точке пересечения делятся пополам.

простоквашино2345 простоквашино2345    2   08.03.2019 14:20    2

Ответы
daqqwe daqqwe  24.05.2020 06:21

Первое следует из того, что половина длины хорды и РАССТОЯНИЕ ДО хорды связаны теоремой Пифагора с радиусом окружности (ну, возьмите любую хорду, опустите на неё перпендикуляр из центра, и рассмотрите прямоугольный треугольник, у которого катеты - половина хорды и перпендикуляр к хорде, а гипотенуза - радиус). Поэтому хорды, РАВНОУДАЛЕННЫЕ от центра, имеют равные длины. А касательные к внутренней окружности как раз удалены от центра на равное расстояние - на радиус малой окружности. 

 

Чтобы доказать второе утверждение, достаточно доказать, что линия центров делит внутреннюю касательную пополам (тогда она и вторую делит пополам :)). Если соединить центры окружностей и провести радиусы в точки касания внутренней касательной, то мы получим 2 прямоугольных треугольника с равными углами и катетами-радиусами, которые равны по условию. Этого достаточно,чтобы утверждать равенство треугольников. Откуда и следует, что линия центров делит внутреннюю касательную пополам. Значит, она и вторую делит пополам, значит - внутренние касательные пересекаются в своих серединах.  

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия