Два равнобедренных треугольника имеют равные углы, противолежащие основаниям. периметры этих треугольников равны соответственно 15 см и 10 см . найдите стороны второго треугольника, если боковая сторона первого треугольника равна 6 см. чему равен коэффициент подобия? 1)9: 4 2)5: 2 3)3: 2

гульназ85 гульназ85    1   16.07.2019 16:50    1

Ответы
тоня119 тоня119  03.10.2020 05:57
Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5
Найдём стороны второго треугольника, у которого периметр равен 10.
У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника:
1,5=6:x
x=6:1,5=4 см.
Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см.
А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3.
ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия

Популярные вопросы