Доведіть,що чотирикутник abcd з вершинами в точках а(3; -1) в(2; 3)с(-2; 2)d(-1; -2) є прямокутником

tamtamtamira tamtamtamira    2   11.09.2019 10:24    4

Ответы
maksgibert61 maksgibert61  07.10.2020 07:25

Смотри объяснения.

Объяснение:

Найдем стороны данного четырехугольника:

|AB| = √((Xb-Xa)²+(Yb-Ya)²)) = √((-1)² + (4)²) = √17 ед.

|CD| = √((Xd-Xc)²+(Yd-Yc)²)) = √(1² + (-4)²) = √17 ед.

|BC| = √((Xc-Xb)²+(Yc-Yb)²)) = √((-4)² + (-1)²) = √17 ед.

|AD| = √((Xd-Xa)²+(Yd-Ya)²)) = √((-4)² + (-1)²) = √17 ед.

Так как противоположные стороны четырехугольника попарно равны, четырехугольник ABCD - параллелограмм.

Вектора перпендикулярны, если их скалярное произведение равно 0. Проверим это на векторах АВ и ВС:

(АВ·ВС) = Xab·Xbc + Yab·Ybc = (-1)·(-4) + 4·(-1) = 4-4 =0.

Таким образом, вектора (стороны параллелограмма) АВ и ВС перпендикулярны.

Параллелограмм, у которого угол между смежными сторонами равен 90°, является прямоугольником, а прямоугольник с равными сторонами является квадратом.

Что и требовалось доказать.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия