в трикутник авс и а1в1с1 ав=а1в1 и вн=в1н1 (дано).
тоді трикутники авн и а1в1н1 равні по катету и гипотенузе (4-й признак).
в рівних трикутниках проти рівних сторін лежать равные в треугольниках авс и а1в1с1 ав=а1в1 и вн=в1н1 (дано).
тогда треугольники авн и а1в1н1 равны по катету и гипотенузе (4-й признак).
в равных треугольниках против равных сторон лежат равные углы. значит < a=> a1.
треугольники авс и а1в1с1 равны по катету и прилежащему острому углу (2-й признак).
что и требовалось доказать.
в трикутник авс и а1в1с1 ав=а1в1 и вн=в1н1 (дано).
тоді трикутники авн и а1в1н1 равні по катету и гипотенузе (4-й признак).
в рівних трикутниках проти рівних сторін лежать равные в треугольниках авс и а1в1с1 ав=а1в1 и вн=в1н1 (дано).
тогда треугольники авн и а1в1н1 равны по катету и гипотенузе (4-й признак).
в равных треугольниках против равных сторон лежат равные углы. значит < a=> a1.
треугольники авс и а1в1с1 равны по катету и прилежащему острому углу (2-й признак).
что и требовалось доказать.