Докажите, что у равных треугольников ABC и A1B1C1: биссектрисы, проведенные из вершин B и B1 , равны если можно с чертежом ​

shifu90 shifu90    1   19.04.2020 16:22    3

Ответы
dashabalybina11 dashabalybina11  13.10.2020 11:53

Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.

В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

Откуда AK = A1K1.

Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.

В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

Откуда AK = A1K1.

Объяснение:

Вроде так...

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия